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Abstract

Multigrid convergence rates degenerate on, problems with stretched grids or
anisotropic operators, unless one uses line or plane relaxation. For three dimen-
sional problems, only plane relaxation suffices, in general. While line and plane
relaxation algorithms are efficient on sequential machines, they are quite awk-
ward and inefficient on parallel machines. This paper presents a new multigrid
algorithm, based on the use of multiple coarse grids, that eliminates the need for
line or plane relaxation in anisotropic problems. We develop this algorithm, and-
extend the standard multigrid theory to establish rapid convergence for this class
of algorithms. The new algorithm uses only point relaxation, allowing easy and
cfficient parallel implementation, yet achieves robustness and convergence rates
comparable to line and plane relaxation multigrid algorithms.

The algorithm described here is a variant of Mulder's multigrid algorithm
[5] for hyperbolic problems. The latter uses multiple coarse grids to achieve
robustness, but is unsuitable for elliptic problems, since its V-cycle convergence
rate goes to one as the number of levels increases. The new algorithm combi nes
the contributions from the multiple coarse grids via a local "switch," based on the
strength of the discrete operator in each coordinate direction. This improvement
allows us to show that the V-cycle convergence rate is uniformly bounded away
from one, on model anisotropic problems. Moreover, the new algorithm can be
combined with the idea of concurrent iteration on all multigrid levels to yield a
highly parallel algorithm for strongly anlisotrol)ic problems.

"'hi rinrcl wr was Iarfiadly sulpjlor(Id by thw Nalloioal AcroliaiiLiq and Space Adninisralion indcr
NASA (ontracf, No, NASI-18605 wlilt' ieialliuorn wi'r,, in residence al 1(ASE, NASA Langl y Rtr-rch
(wr~tr, Ihiplon, VA TWO;(5.



1 Introduction

As is well known, the convergence rate of multigrid algorithms based on point relaxation
imoothers degenerates on problems exhibiting strong anisotropies. Thus line or plane re-
laxation in each of the coordinate directions is often needed to obtain good multigrid con-
vergence rates. Anisotropic discrete operators arise in problems in which the differential
operator exhibits stronger coupling in some coordinate directions than in others, or when
the discretization is based on highly stretched grids having mesh aspect ratios far from unity.
For such problems, line relaxation typically suffices in two dimensional problems, while for
three dimensional problems plane relaxation is often required. With standard (full coarsen-
ing) multigrid in three dimensions, plane relaxation in each of the coordinate directions is
required in general [61.

Plane relaxation, is very expensive, especially for systems of equations. Given this, interest
has focused recently on "semicoarsening" algorithms, in which the plane relaxation is carried
out in only one direction, while the grid is "coarsened" only in the direction orthogonal to
these planes [1]. The required plane solves can then be done recursively, via an analogous
two dimensional algorithm, based on line relaxation in one direction and coarsening in the
orthogonal direction.

While such "semicoarsening" algorithms are fast and effective on sequential architectures,
they have limited and awkward parallelism. The recursive solution of two dimensional prob-
lems, required in the plane relaxation, takes O(log 2 N) parallel operations, so that it takes
O(log3 N) parallel operations per three dimensional V-cycle, where N is the number of mesh
points. Thus it takes time at least O(log' N) to converge to truncation error.

An alternative way of achieving robustness, which avoids line and plane relaxations al-
together, is to use multiple coarse grids formed by semicoarsening in each of the coordinate
directions, as in Mulder's hyperbolic algorithms [5]. In this paper, a modification of Mulder's
method is proposed, which substantially improves the convergence properties of his methd,
when applied to elliptic problems. This enables one to design effective V-cycle elliptic solvers
for anisotropic problems, using only point relaxation smoothers. This new class of methods
is shown to be simple, robust, and effective.

One-can also construct a highly parallel algorithm for anisotropic problems by combining
the new algorithm with the idea of concurrent iteration on all multigrid levels [2]. This paper
gives numerical experiments suggesting the efficay of this approach, though we have yet to
explore the use of this algorithm on parallel niachines.

2 Algorithm Design

Strong coupling of the operator in a particular direction can easily degrade the performance
of a irultigrid method. There are several ways of accelerating convergence in the case of such
anisotropy. Line relaxation and semicoarsening methods can be used to correct, respectively,
the inability of the relaxation method to solve for some high frequencies, and the inability
of the standard coarse grid to represent high frequencies. In the line relaxation method, the
ineffective point reltxation is replaced by line relaxation in the direction of strong coupling.



By removing the residual components due to the strong coupling, thie remaining residual
(ill( to weak coupling in the other direction can he effectively smoothed by the relaxation,
Thus line relaxation together with standlard coarsening is sufficient to uniformly reduce all
Fourier components, in two dimensional problems. In the second approach, instead of using
line relaxations, the grid is coarsened only in the direction of strongest coupling. In this
case, point, relaxation togcthcr with semicoarsening suffices to uniformly reduce all Fourier
com Ipontents.

Ill addition to line relaxation and seinicoarsening, other methods have been proposed that
more aggressively solve for thc difficult frequencies. Hackbusch's Rob~ust Parallel Multigrid

[3) uses 'forced aliasinig' to represent high frequency components on standlardl coarse grids.
Tlir htigh frequency components of the residlual are aliascd to low frequencies, solved for on
a~ coarse grid, and then the coarse grid correction is "de-aliased" back to the high frequency.
Although this method uses point relaxations and standard coarsening, it requires thle use of
mnultiple coarse grids, each with a different discrete operator, and is thus quite complex.

Ill this paper we will look at a natural extension of the second approach, use of semi-
coarsening. This approach was originally proposed by Mulder [5] for overcoming the problem
of alignment in fluid flow computations. The simple technique of semicoarsening simulta-
neously in all coordinate directions, and properly weighting the contributions from each of
the coarse grids, yields an efficient, robust, and easily parallelizable multigrid method for

* general tensor product grid.

* 3 The Algorithm

The multiple semicoarse grid (MSG) correction scheme (for linear problems) is similar to
the standard mnultigrid correction scheme, except that there are now extra grids involved. In
two dimiensions every grid is simultaneously coarsened in two directions.

Wefirst suppose, for simplicity, that the dlomain of the modlel boundlary problem is the
unit, squitre, and that this lproblein is to be solved on anl N x N uniiform grid given by

Qh= {(it, jh) I i = 0, 1,-., N - 1; j = 0, 1,-., N - lI

where hi = 1/N and N is at power of two. Let the subgrid, Q-.?l, obtained by successiv'ely
svi;em coar-scimng flh, be the grid with N12... grid p~oinits in the r direction andl N12" gridl
points i ti the y dIirection.

Notice that. Ow notation dioes not dlistinguiish between a grid ob~tainied lby semicoarsenirig
first ill the Y dIirectioni anid then in th dC(i rection and at gridl obtained b~y semicoarsening first
i thre x dIirection and~ thenii i the y dIirectioni. As; shown ill MIulder, in orde~r to construct
r41lollalIe algori thm fitIll three or ruiore diiru(!rsionis, I lie problems onl equivalent gridls muist, be
(OfTiined. Figuire I shows the i nterrelationis betweeni the variious grids for a two dimenlsional
problemi with im $ x 8 fi lle gridl. With coarse grids combined as ill t his dingr~rii, one has a
OrIlly 1 6 grids altogedir' r, while withouit. combiiiirg I lhe full binary tm,' of gridls would contain
69) grids1 1iil havo no0 real nriericoid ad vailage.

Now i rilrodi ig more, no~tation, the dimcrete cr(rmialions ont grid 11"'" ati, writtell as-



'Ihle operators can be thought, of as either e'scretizations of the differential operact n.
h. on the grid Wn11 or as opecrators obtained -.,,,,ationally from the fine grid and iritergrid
transfer operators.

A k grid (N = 2 k) V-cycle for this mnetho*d its performed it) three parts. In part. a the.
information is propagated from the fine grids to the coarse grids, in part b tile equations are

Avdon the coarsest grid, and in part c the information is propagatedl back from the coarse
grids to thc fine grids.

MSG algorithm

a. For I= 0, 1, 2,...,2k -1:
F or all mn 0, ni > 0 such that m + n 1 :

1. If 1 > 0, combine restricted residuals on j",

2. Relax 1'i times on thle fj-,n~grid equations
3. If mn < k, transfer (restrict) residual from 11-m to flm+],n

4. If n < k, transfer (restrict) residual from fl, to f~m,n+1

b. Fo r 1 = 2k:
1. Combine restricted residuals on kk

2. Solve (1) by any direct or iterative method on flk~k

3. Transfer (interpolate) correction from Sl,k to fjk-1,k and fk,k-1

c. For. =. 2k -1,2k.-2,..1,O0:
For all m > 0, 11 > 0 such that m + n = 1:

1. If I1> 0, combine interpolated corrections on
2. Relax V2 times on the jjm.n..grid equations
3. If m > 0, transfer (interpolate) correction from 11,,nl to flm-1,n

4. If n > 0, transfer (interpolate) correction from tomn-

Any poinit relaxation on equation (1) can be used in steps a2 and c2. For steps a3, a4,
c3, and c4 we consider intcrgrid transfer operators which are one dimensional. For example,
the re.sidtial restriction operators could be the usual three point averaging formula., given
by thle Stencils:

* 4
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Figure 1: Semicoarsening of an 8 x 8 grid
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Similarly, one dimensional linear interpolation in the direction of grid refinement could be
used -to bring the corrections from coarse to fine grids.

We now look at the details of step al, in which the residuals on Wmn must be combined,
and step cl, in which the corrections on f,, must be combined. The restricted residuals
are simply averaged. Specifically,

m,n m-l,n + m,n m,n-I if m > 0,

r'= "m-,.r .- , if n = 0, (2)

I m ' rmn - 1  if m = O.
m ,n -

A weighted average of the interpolated corrections is used, so thatJ m,n ,+u,."+mnn ..,+ 1 if m < k, n < k,
I tt+l ,n

t  
" 2  Mren+ I L

U mn ,+tInU if n =k,

I n,n ,m,n+l1 t,+ +I if m = k.

The MSG algorithm can lead to mnultigrid convergence rates independent or mesh si.,
provided the weights Wj and W2 are chosen properly.

4



4 Convergence Theory

In this section, we give our convergence proof for the MSG method for a constant Coefficient
model problem in two dimensions, and derive sufficient conditions on the weights. These
co7ditions are then used in the next section to motivate the choice of weights for the variable
coefficient problem.

In order to show that the convergence rate of the MSG method is independent of mesh
size for linear, constant coefficient model problems, we make the following assumptions:

Al. The coarse grid operators are Galerkin, or 'variational'.

A2. The restriction and projection operators are adjoints of each other and are one
dimensional.

A3. The discretizei operator is symmetric positive definite.

A,i, The linear part of the smoother and the discrete operator commute.

We model both our analysis and our notation after that in [4], although some notational
changes are needed in order to keep track of the multiple grids on each level. In particular,
it is more convenient here to label grid levels in the reverse order, so that the grid level
incrcaecs as the grid becomes coarser, contrary to the standard convention. If the two grid
directions are to be coarsened a maximum of in- times in the first direction and fi times in
the second direction (0 _< m < fn and 0 :< n < fi) then the coarsest level will be given by

i = n + it and the coarsest grid will be given by the indices mi, fA.
We are looking for the solution of

AO,OuO,O = foo

where A0'° is symmetric positive definite. For each coarser grid level, 1 1,..., 1, we recur-
sively define each of the operators A',', for m + n = 1,

n ",-1,n if m > 0

A frnn-
',n m,n-lm,n- if m = 0

tn~rn- !I Jtr ni

Note that if ?n and n arc both positive then there are two ways to construct the coarse
grid operato,'s from the fine grid operator. However, since the intergrid operators are one-
dimensional,

,,, ,,-l - ",,I. I (3)

an(l therefore either way gives the saine rest I,

Our notation is ns follows. Each of the A""are operators on a finite dinensionl space,

1fII'" Since we will only be looking at two grid levels at a time., we simplify the grid indice"

1r.1



he shorthand notation:

k v~

k, t it + l,it,
k2  rn, n+

%V1 also define the inner products

ki

[Uk, Il Ik = (Akuk, vk)k

for any Ilk , vA in 11 . The second, 'energy', inner product induces a norm on Hk, which we
lenote by .Ilk, thus

II~VII2 = [Vk, v~k=(kvk k) k.

We also define four subspaces of each space Hk as follows. For i = 1,2:

=R(I'i)
i = {vEIIAI[v ,wklk 0 for allwkES i}

Corresponding to these subspaccs, we define projection operators, Tik and Si such that

R(Tik) = T

kcr(T) = Si
S. I -Tt.

for i = 1,2.

With the above notation, we are now ready to discuss the V-cycle convergence anaiysis.
The approximation to the solution of the kth grid equations is updated threc times per V-
cyclc; once after the v, rclaxation sweeps in step A2, once after the coarse grid correction in
step C1 and once after the v2 relaxation sweeps in step c2. We label the initial approximation
M U and the approximations after each of the three updates as u k for i =1,2 and 3. If

g denotes the relaxation operator, then the updates are given by

flt,) = tu,,, )k k kU ( ) = "0 , +
k k kik 0 1 + kikk 2

lL(2) = U(1) + W1 'A, U(,f 2 Wk 2 L(3)

S,7L-. 2(, 2), f/ )

(3 AG(u ()fki), j = 1,2.

We make two a(lditional aSSittll)tiotns ini order to simplify the case when two grids on the
satre grid level are setnicoarsened in opposite directions, yielding coarse grids of the same
diriieisions. ltecall that the coarse grid problesl on these coarse grids are combined to form
a iingle problem.

6



A5. lhe initial ap)roximiationi is e(qud to wro on all ,xcpc thw finest levei;

I(()) Z: , for all k = rrt,Yt ; O,0

A6. There is no smoothing in the fine-to-coarse part of the V-cycle:

II :0

Thcsc assumptions guarantee that the residuals from both grids are identical, as shown in
the following lemma.

Lernma 1 For m, n with 0 < m < fi, 0 < n < it:
m,n t -l,n m,n m,n-I

fmn -f , - m,- 1

Pro6f:
The lemma is proved by a simple induction argument on the grid level 1, using the

additional assumptions A5 and A6, together with Equations (2) and (3). I

A standard multigrid V-cyclc convergence result can be based on a single assumption,
which combines both the smoothing and the approximation properties of the problem,
namely

IPHII, > 1
IIFkvll 1-Fkvj

for all v E /k and for all grid levels k. See [4]. Here F ' is the linear part of the smoothing
operator as We asume sufficient regularity and take a = 1. Then if we define the multigrid
convergence rate on the kth grid level as

-k _-inr{luk AG(,k, fk)lk _ ell- VkI1k for all Vk E 1k)},

th, V-cycle convcrgence theorem for standard multigrid algorithms is

Theorem 1 (Standard) Let k > 2 and suppose w. have already bounded ek- 1 by

1

In our case, in which we have multiple coarse grids on each grid level, we can prove a
similar result. In fact, the convergence of the NISG V-cycle algorithm can he as good as the
convergence of a standard V-cycle mniltigrid in which evety grid is semicoarsened only in the
optimal direction.

I7



Thecorem 2 (MSG) Suppose that

* IjvDj > lIFk'vII' + 13i)17;#FkvtI', i 1,2,(4

for till v E jjk and for all grid levels k, and choo8c the weight8, Wk and wk, go that

max(em+l~n C mn+l) Min' +/2

~+ 91 + 1 +2

Proof-
First wc note that

WI ±W2  1 5

We denote the grrors corresponding to the updates by ek) for i =0, 1, 2 and 3, where

e (,) = U )U

and where it' is the exact solution of the kth grid equations. Using Lemma 1 we see that,
for both i =1 and i = 2,

k ik

B3y our assumptions we also have
Ck k
6(1) C() (6)

Combining these results, we can write

= ~ ~ ~ ( (wii +(3i)cO Wtk ) ± Ik2 (3).

iPheri the error before and after the V~2 Ipost-rclaxation sweeps is

C k Fkek
(3) (2)

Since we need to look at only two grid levels at a timec, we will temporarily Suppress the
notational references to the current grid, A-. Thuus, we diefine, for i =1, 2 and j =0, 1, 2A3

andio so on.



Consider an arbitrary element, v, of 11~, and let y Pty?. Then

(C(3), VJk [C( 2), !/I

- (wl 7' + W2T2)c(O) + w i'(3),,+ W2Ik 2()

rkIQ4 1 ([T 6 Tl, y +[kl21 ~]
w([Tl(l), Ty) + VL (~ 3), sly)) + W2 + (c3,,~

By the Can chy-Schwartz inequality,

f[c(*V, v:j W1 (JIT7'C(I)II JIJ"JYuI + 6i 1 c111rIl iIStuji) +W2"' (ITI)iII 11712Yjj + ' 21IS 2e(,)II IIS2yii)

since, for i = 1, 2,

1II 'j (3)11 = I 11(3)11 :5 O l i ()1 uII = il (ill~ klkk u'I i llS'ieo )I.

Using the Cauchy-Schwartz inequality onc more time gives us

S(wiIT 7'le)1 2 + IISle(I)112) + w2(jjT'eoII 2 + 1()112))

(wil(IITyI2 + EliII,5yII2) + wJ2(IIT2Yll 2 -62 12IS 2uII2))

Dividing through lby the square norms of the initial error and v and using, Equations (5) and
(6) this simplifie's to

J~() ]2 L, (WI(lTiylI2 + e, IIS,y112) +w(I~I 2 +~ISyI)

It is convenient to define two variables, il anid t2, Such that

1110 , 12 IT2yII 2

11 huh 2  11Y1l2
atnd rewrite our inequality as

I h(:), t41 I' 111 1 (/( + 6, 10 11)) + (P2(12 + IT2( I 12)) -(7)
IIC(0)11j2jj?)II2 - !1VII2

'Ilie smoothing and approximation hiypothieseo given b~y FJmiution (41) or ohe thcoremr can
then be rewritten in terms of the new variables as,

1jul1+
>4?12 I+j~~



Figure 2: Limits on w,

77

1 2

We can therefore write inequality (7) in terms of t1 and t2 with either of these upper bounds

OB Irv)11 , so we are frec to use whichever is smaller. Thus,

ikI [ vH C (3) (] 12 < ((wit + C(l - to)) + (w2(t2 + 2(0 t2)- (8)

TEaking the maximlum over all values of t1 and t2 we arrive at the following bound on the

convergence rate,

Ek < max (min ((W 1t 1 )10-t) W 2+6( 2)
0 <1 ti 1 1 + Oltl'71 0/2t2(((t+e(-1)(w(+ 2 (

0 < t2 1 I

Usinig the definitions of the weights w, and W2 and the conditions on the ei's, it follows that

#./'< min 1 1

Note that the weights in the hypothesis of the theorem, while convenient, arc not the
only choice. All we really ncded in the proof was that the weights lie within some bounds,
(leterrnined by the fli's. If we define the ratio, q~=~ then the theorem will be proved
p~rovided w, :5 7, and1 w, ': I - Y, whenever q~ : 1 and w, > I - I /q and W2 :5 1/1? whenever
Yj 1 . For the sitatement of the theorem, we have chosen w, = v/(q + 1). See Figure 2.

1 0



5 Practical choice of tile weights

Suppose that, as in Mulder, the corrections from the two coarse grids are averaged. Thus,
the weights are given by

1 n,n

W2 2'
These weights give a two-grid convergence rate of approximately 1/2 in the case of strong
alignment, because the appropriate grid gets only half of the needed information. In this
case, our convergence result does not guarantee good convergence. Thus we should look for
ways, based on our theorem, to improve the convergence of this method.

Recall that only semicoarsening in the direction of strongest coupling can significantly
reduce the frequencies which cannot be reduced by the point relaxation. The weights provide
a way of "switching" to the appropriate coarse grid in the cases of strong alignment in one
of the coordinate directions. For our model problem, au,, + 7yu/, = f, we have some degree
of freedom in the choice of the weights. We could take, for instance,

C2  72

a2 + 72' =f -w - c2 + 7 2  w2-a2+y2.

Since the appropriate grid gets all of the needed information in the case of strong alignment,
these weights can lead to convergence rates which can be made arbitrarily small by increasing
the number of relaxation sweeps.

In general, w, and w2 will vary over the domain and we will not know the relative strengths
a and 7 explicitly. Suppose we know that, locally, all modes which cannot be efficiently
reduced by point relaxation can be well approximated on the same semicoarsened coarse
grid. That is, suppose semicoarsening can be used locally to accelerate the convergence.
In this case, we would like to determine the most efficient direction of semicoarsening and
choose our weights accordingly. One way to do this is to test the operator, at the given grid
point, on two different high frequency Fourier modes, one oscillatory only in the x-direction,
the other oscillatory only in the y-direction. The two modes, call them u and v, which are
most natural look locally like:

!1 -1. 1 -1 1.-i -1 -1 -1 -1 -1 -1

1 -1 1 -1 1 -1 1 1 1 1 1 1

1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1

1 -1 1 -1 1 -1 1 1 1 1 1 1

1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1

*.1 -1 1-1 1.-i 1 11 11 1

Appropriate weights at the grid point (i,j) can be determined by applying the operator,

--11



'"'" to u and v. We define

(A"'"u f)(0~) =AUi,j) and (Am"u,(ij) A.(I',j).

lhent a reasonable choice for the weights is:

,,,U A, = 2A2J) + A2, W A +A2

'hus, if there is a direction in which semicoarsening can give an acceptable convergence rate,
thi-nethod should find that direction.

6 Theoretical Complexity - Sequential and Parallel

As shown in Mulder (5], the cost of a sequential MSG V-cycle is proportional to the total
number of points on all grids. In two dimensions, where the fine grid consists of M x N
points, there is a total of (2M - 1)(2N - 1) grid points on all of the grids combined, as can
be easily seen by arranging all of the grids as in Figure 3. Thus, there are approximately four
times as many points on all the grids as there are on the finest grid. A similar arrangement
of all of the grids obtained by semicoarsening a three dimensional L x M x N grid is also
shown in Figure 3 giving a total of (2L - 1)(2M - 1)(2N - 1) grid points on all of the
grids, approximately 8 times the number of points on the finest grid. The cost of the
d dimensional algorithm, will be roughly proportional to 2d times the number of points on
the finest grid. A parallel implementation of the MSG algorithm is relatively straightforward
since the computational work on a given level is local and can be performed simultaneously
at many grids points. For a modest number of processors, most of the computation time is
spent on the fine grid levels since, on each fine grid level, 1, there are

MN id--iMN

d-1i

grid points per level. On coarser levels this is an upper bound on the number of grid points.
Thcrcfore the number of grid points decreases like a polynomial divided by an exponential
as the levels become coarser. For a large number of processors, approximately equal to the
number of grid points on the finest grid level N, an equal amount of parallel computation
time is spent on all grid levels, resulting in a computational cost per V-cycle on the order of
log(N).

On message passing machines, the communication between grid levels can become a
problem as the number of processors is increased. Consider what happens in the extreme
casewhere we have as many processors available as we have grid points on the finest grid.
If we assign one grid point to each processor, then some processors have more work on the
coarser levels and some processors will have no work, simply because the multiple semicoarse
grids have some grid points in common. Thus, some sort of re-distribution must occur in
order to keep the load balanced. We propose two different schemes, a simple scheme involving

12
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Figure 3: Successive emicoairtning, total wim!lwr of poi lts

transposes, which works only in two dimensions, and a second scheme which offsets the grids
in order to reduce the communication. Both schemes preserve the computational complexity,
but have differing communication requirements. The offsetting scheme is ideal for hypercube
coifuitunication networks, since all communication is between nearest neighboring processors.

The transpose scheme is based on the observation that in two dimensions, even if the
grids of the same dimensions are not combined, the total number of points on each level does
rnot increase. For example, if we start with an 8 x 8 grid on level zero, we get a 4 x 8 and an
8 x 4 grid on level one, still having 64 mesh points. On level two, we get a 2 x 8, two 4 x 4,
and an 8 x 2 grid. By carefully transposing and packing these grids, we can fit all 21 grids
on level 1 into a 8 x 8 array, as shown in Figure 4. This mapping does keep all calculations
on a particular grid local, but involves packing and shifting between grid levels.

In higher dimensions, this type of packing of the coarse grids does not work. Moreover,

; 1 3



Figure 4: Trartipotw scheme

this scheme involves intense communication in the packing phase which could make itpro-
hibitively expensive on some machines. For hypercube communication networks, there are
alternate schcemes which keep all of the grid data local. One possibility is to offset the various
coarse grids to redistribute the load. For example, in two dimensions, using N 2 points and
(2N - )2processors, there is a simple one-to-one mapping from all of the points on all of
the grids to the (2N - 1)2 processors. For every grid level 1 (0 :5 1:5 k), and for every grid

flnnon level I (m > 0, n > 0, m + n = 1), let the (i, j)th grid point on grid 11m ~fl be assigned
to the (t^, 3)processor where

= 2m+l + 2.,_ 1,

where 0 <5 i < N12' and 0 j < N12'. The quantities 2"' - 1 and 211 - 1 in the above
expressions are the horizontal and vertical offsets for the jlm~n grid. Since information is only
transferred to grids differing by one in either m or ni, then the relative offsets are always by
a power of 2 in one direction. This scheme works equally well in three or more dimensions
and the extension is obvious.

Finally, we note that the offsetting of the various grids can easily be incorporated into
* the interpolation and restriction operations. During a restriction from S1m, to1fm+'I', for
* example, an averaging of three values of the residual in the x direction is immediately followed

by a shift of all values to the processor which is 2' to the right. Similarly for the coarsening
* in the y direction. During the interpolation, this process is reversed. Interpolated values

are shifted to the left. This method automatically maintains the correct offset for all of the
grids and increases the communication by only a constant.

Note that, when relaxations are only performed on one grid level at a time, it is sufficient
to offset the grids in only one of the two coordinate directions, using only N(2N - 1)
processors.

7 Experimental Results

Experimentally, the MSG algorithm converges extremely well for the model problem ol, +
tYUnsf, g using the weights suggested in Section 5. Asymptotic convergence rates are given '
in Table 1. These were obtained using a random initial approximation to the solution,
rescaling after each iteration and observing the limit of the ratio of subsequent errors (12).
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All available coarse grid levels were iiwd, with Lwo red/black SOLt relaxation swerpo I'r
grid level and an exact solve on the coarsest level. The convergence rates are eein tW !e
uniformly small for all ratios, a/fy.

MSG was also used on Poisson's equation on non-uniformly stretched grids. Chehyshev
grids were used in both directions, with convergence comparable to the uniformly stretched
grids. See Table 1. The convergence rates for grids which have Chebyshev stretching in
only one direction are also given and can be seen to be in the same range as for the model
problem. -

The last entry in 'rablc 1 is for exponential stretching or the grid in one of the coordinate
directions. The exponential stretching is done so that the ratio of the lengths of the first
and the last cell is 10,000. The convergence rates are slightly worse, but still appear to be
bonided independently of grid size.

8x8 16x16 32x32 64x64

Uniform Grid
a/7 = 1 0.07 0.09 0.10 0.10

= 10 0.13 0.15 0.15 0.15
a/7 = 100 0.16 0.19 0.19 0.19
a/7 = 1000 0.16 0.19 0.21 0.21

Chebyschev Grid 0.14 0.15 0.16 0.16

Uniform/Chebyshev 0.09 0.13 0.15 0.16

Exponential Stretching 0.15 0.18 0.19 0.20

Table 1: Asymptotic convergence rates of MSG on various types of grids

On massively parallel architectures, the relaxation sweeps in the MSG algorithm can be
performed concurrently on all grids on all grid levels using the CMG algorithm of Gannon
and Van Rosendale [2]. The combined CMG/MSG algorithm proceeds in two phases. In the
first phase, the relaxation is performed on all grids, on all levels. The second phase is the
intergrid transfer phase, in which residuals and corrections from each grid are transferred to
neighboring coarse and fine grids, respectively. Experimental results indicate that the ro-
bustness properties of the MSG algorithm are retained. In Table 2, the observed convergence
rates are given for the model problem. Note that we again observe that strong alignment
does not seriously degrade the convergence. The convergence rates per concurrent iteration
are mostly in the 0.4-0.6 range.
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8x8 16x16 32x32 64x64

Uniforii 'rid
a/ 1 0.42 0.52 0.59 0.60

1r/' 10 0.46 0.48 0.59 0.61
= 00 0.40 0.43 0.52 0.57

a/y = 1000 0.41 0.43 0.51 0.55

Chebyschev Grid 0.37 0.44 0.50 0.53

Uniform/Chebyshev 0.44 0.53 0.56 0.57

- Exponential Stretching 0.48 0.59 0.63 0.63

Table 2: Observed convergence rates of MSG/CMG on various types of grids
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